White River Solar Project

Earlier this month, Meeker-based White River Electric Association opened a new solar farm. WREA Members will have opportunities to lease blocks of power from the Piceance Creek Solar Farm beginning in May 2019.

The lease program will be similar to the solar leasing program at the Meeker Solar Garden which is adjacent to Meeker High School.

This is the electric co-op’s third local renewable project. The 4 megawatt project is the largest of its kind in western Colorado.

Spanish Peaks Solar Project Announced by Tri-State

Over the last 10 years, Tri-State Generation and Transmission has added more than 475 megawatts of utility scale wind, solar and other renewable energy projects to its portfolio. This diverse generation mix will continue to increase with a new solar project.

The 100-megawatt Spanish Peaks Solar Project is the fourth utility-scale solar project from the Westminster-based G&T, which supplies power to 18 of Colorado’s 22 electric co-ops. Tri-State partnered with juwi and will purchase the entire output of the project over the 15 years of the power purchase contract.

The solar site will sit on 660 acres approximately 20 miles north of Trinidad in southern Colorado. With 300,000 photovoltaic solar panels that will follow the sun throughout the day, the solar project has the potential to serve the electricity needs of 28,000 rural homes.

Construction of Spanish Peaks is anticipated to begin in 2022 with completion in 2023.

San Luis Valley REC Installs EV Charging Station

Monte Vista-based San Luis Valley Rural Electric Cooperative recently installed an EV charger in its parking lot. The charger is a dual-port PowerCharge and the electric co-op will offer a six-month trial period for people in the area to stop by and try it out.

The Level 2 charger was installed in response to research and a survey that SLVREC consumer-members participated in. Many survey respondents showed support of the charger and of EVs in general. This charger is one of several charging locations in the San Luis Valley, according to PlugShare.com. SLVREC hopes this will spark EV interest among the electric co-op’s consumer-members.

San Isabel Electric Awards $12,000 Rebate

In an effort to make its facilities energy efficient, brighter and lower-maintenance, the Las Animas County Fairgrounds in southern Colorado switched out its outdated incandescent lighting fixtures for Energy Star-qualified LEDs.

Not only did this change make a noticeable impact on the quality of lighting at the fairground facilities, it also earned the county a rebate of more than $12,000 through San Isabel Electric Association’s commercial lighting rebate program.

The commercial rebate program helps organizations in the co-op’s service territory upgrade lighting systems to LEDs. The use of LEDs reduces electricity bills and the bulbs last 15 to 25 times longer than traditional bulbs. This saves organizations money and time by reducing replacement and electric usage costs, and by not having to keep up with replacing bulbs in outdated lighting systems.

The Las Animas County Fairgrounds now features nearly 150 LED fixtures and nearly 570 linear feet of LED bulbs. They also installed timers, automatic daylight shutoff and motion sensors to save even more energy and money.

Holy Cross Energy Expands Renewable Energy

In January 2019, western Colorado’s Holy Cross Energy entered into a power purchase agreement with Guzman Energy, enabling the development of a new 100-megawatt wind farm.

Projected to connect with the grid in 2021, the wind-generated electricity will serve Holy Cross consumer-members across its service territory. It will also support Holy Cross’s clean energy goals. The co-op outlined its Seventy70Thirty plan early in 2019, calling for 70 percent clean energy by 2030. Currently its renewable electricity portfolio is at 39 percent.

Holy Cross says this partnership will reduce dependence on coal and adds renewables to the grid without increasing costs to consumer-members.

How Net Metering Impacts Electric Cooperatives

By Paul Wesslund

One of the most controversial and least understood energy issues today is net metering.

At its most basic, net metering is a state law requiring utilities, including electric cooperatives, to purchase the excess electricity produced by consumers who have rooftop solar panels. But that’s where the simplicity ends.

States and electric utilities have established net metering programs to encourage clean energy generation. Nearly every state has some kind of net metering rule and they’re changing all the time. In the first nine months of 2018, states took more than 400 actions to change how they compensate small energy producers, according to the North Carolina Clean Energy Technology Center, which collects net metering information from around the country. Some of those actions strengthened net metering laws, others weakened them.

In Colorado, electric cooperatives’ net metering requirements are governed by state statutes and the Public Utilities Commission (PUC) interconnection standards. The statute requires all electric cooperatives to allow interconnection of a net metered generator of a renewable resource up to 10 kilowatts for residential accounts and 25 kW for nonresidential accounts, provided the installation complies with the interconnection standards adopted by the PUC.

Colorado co-ops may choose to have policies to allow installation of larger projects, but must interconnect at the 10 and 25kW minimum levels if the interconnection standards are met. If a cooperative denies an interconnection, the cooperative must provide the applicant with a written explanation for the denial.

Here are some additional explanations about net metering:

What is net metering?
Net metering is a way of measuring and valuing the electricity output of privately-owned solar panels. Net metering requires utilities, including electric cooperatives, to buy excess electricity back from consumers who have some way of generating electricity themselves. Net metering typically means that the consumer’s meter rolls forward when the consumer uses power and rolls backward when the consumer sends excess electricity back to the electric grid.

That excess electricity could be produced by solar panels, a windmill or a micro hydropower project. By far, the main source of this extra electricity comes from homeowners who installed solar panels on their property. Whenever their solar system generates more electricity than their home is using, under net metering, the electric utility must compensate the homeowner for the excess electricity.

The PUC interconnection standards are intended to protect the safety of the consumers, employees and owners of the net metered account by requiring approved equipment and availability on the circuit to be interconnected. Cooperatives may deny an interconnection if the equipment isn’t up to standards or if there is not sufficient available capacity on the circuit to accommodate additional net metered accounts.

How do electric utilities compensate consumers for the excess electricity?
Some net metering programs require the utility to buy back or credit the consumer’s bill for that electricity at the same retail rate the utility charges for selling electricity. Other programs allow the utility to credit the consumer at the wholesale cost, which is what the utility pays for power. Some utilities require that these consumers (with privately-owned generation) be metered separately. Under these net billing programs, the consumer receives a bill with the credit for the excess electricity subtracted from the total amount due.

All Colorado electric cooperatives are required to adopt policies to compensate net metered consumers for excess generation and to determine the annual “true up” date. However, there is no statutory formula for compensation. Therefore, each cooperative has discretion regarding the amount and timing of compensation for excess generation.

Is net metering new?
Net metering programs have been around nationally since 1983. Since then, 38 states and the District of Columbia put their policies and requirements into law. Additionally, states started passing other laws, such as renewable portfolio standards, that require electric utilities to have certain amounts of their power generated by renewable energy resources, to encourage solar, wind and other forms of alternative energy.

What makes net metering challenging?
The basic challenge with net metering is that sometimes the policies require electric utilities to pay high costs for what is often “low-value power.”

The reason it’s low-value power is you can’t count on it. There’s no solar energy at night and no electricity from wind during calm weather. Renewable energy advocates argue that net metering rates are a great way to support green power, but utilities say it’s not fair for them to have to buy electricity from a rooftop solar owner at a rate that covers round-the-clock service when that’s not what the homeowner is providing.

The results of that imbalance are where the net metering issue gets complicated. One result is that the economics of net metering create a subsidy for rooftop solar owners paid for by those who don’t have solar panels.

The cost difference between buying wholesale electricity at retail rates didn’t matter so much at first, but solar energy is booming, potentially reshaping the effect net metering could have on the energy industry. The number of rooftop solar installations grew 63 percent from 2012 to 2015, according to the National Rural Electric Cooperative Association. As a result of that kind of growth in potential net metering use, many states started rethinking their net metering rules.

Another result affects the ability of the utility to plan for its basic job of supplying reliable and affordable electricity. The engineers and accountants who run an electric utility that provides power 24/7 need to place a higher value on dependable electricity, like from a natural gas or coal power plant, than from several homeowners who may or may not be generating electricity when it’s needed.

Net metering payments also don’t cover the costs of setting up a billing system, paying taxes or any of the utility’s other fixed costs.

What alternatives are there to net metering?
Net metering programs that set the price at wholesale cost are more likely to ensure appropriate levels of compensation for both utilities and consumers who are generating electricity. Also, net billing programs provide a more equitable compensation to the net metered consumer without leaning on other consumers who don’t have solar panels or other ways to generate power at home. Additionally, NRECA suggests other policies for supporting renewable energy without implementing net metering. Those could include tax credits for installing renewable energy systems and dedicated research funds aimed at lowering costs for alternative energy.

How are electric co-ops supporting renewable energy programs that benefit all consumer-members?
Electric cooperatives are leaders in community solar programs that offer their members the opportunity to participate in renewable energy programs that are more affordable and reliable than privately-owned solar panels. Community solar arrays can be sized and priced to fit consumer demand, reducing risks of cross subsidization. With the help of NRECA, co-ops are also working to minimize costs of large solar projects.

As the energy industry continues to undergo major changes, whether to technology, renewable energy use or other emerging trends, electric cooperatives continue working with all co-op members to ensure the delivery of the safe, affordable, reliable and environmentally-sustainable energy our communities depend on.

The Colorado Rural Electric Association expects legislation in the 2019 session to encourage the development of renewable resources, potentially including net metering. There have been discussions regarding increasing or eliminating the 10 and 25 kW minimum interconnection levels. CREA and Colorado’s electric cooperatives supported the legislation to create the current laws regarding net metering and believe they are still appropriate. The law established reasonable thresholds for net metering and allow individual cooperatives flexibility to be as expansive and creative as their consumer-members want to encourage the development of net metering.

Paul Wesslund writes on consumer and cooperative affairs for the National Rural Electric Cooperative Association.

Sangre de Cristo Electric Receives EV Charging Station Grant

Sangre de Cristo Electric Association, Inc., received a grant from Charge Ahead Colorado to install electric vehicle Level 2 and Level 3 charging stations in Buena Vista. Proposed to be located on South Main, the charging stations will have two slots for Level 2 chargers and one for a Level 3 charger.

The general purpose of this project is to deploy electric vehicle charging stations throughout the state of Colorado and in the Buena Vista area with the hopes that it will reduce “range anxiety.” The inability to find public charging stations currently discourages consumers from buying EVs. According to the Colorado Energy Office, installation of the charging stations will alleviate that concern and increase the use of EVs across the state. The Buena Vista station is also expected to bring an economic boost to the area by encouraging EV drivers to pull off US Highways 285 and 24 to charge their vehicles.

SDCEA’s partnership with the Colorado Energy Office and Charge Ahead Colorado promote and support smart investments in innovative technologies. The EV charging units are expected to be online in February of 2019.

San Isabel Electric Dedicates New EV Charging Station

News of the numerous benefits of electric vehicles is spreading across the state, and the southern Colorado community of Pueblo West is a recent recipient of EV charging stations.

A $16,000 grant from the Colorado Energy Office’s Charge Ahead program and funding from other local entities, including San Isabel Electric Association, makes Pueblo West Library the new home of two charging stations.

One Level 2 charger and one Level 3 charger will be at the library, with the electricity being sold at the same rate residential San Isabel Electric members pay.

Currently, San Isabel Electric members are eligible to receive $3,000 off the 2018 Nissan Leaf until January 2, 2019. And the electric co-op is offering a $500 rebate for home-based EV chargers beginning in 2019.

Highline Electric to Build Riverview Solar Project

Highline Electric Association Board of Directors approved a 1.5-megawatt solar project in late 2018 and construction is slated to begin in 2019. The 5,700 single-track solar panels will follow the sun and generate 1.5 megawatts of electricity — enough to power 400-500 homes.

Highline is partnering with Denver-based Pivot Energy (formerly Microgrid Energy) to bring this project online. Named “Riverview Solar Project,” it is project is projected to generate 3.8 million kilowatt-hours per year to the communities of Sterling, Atwood, West Plains, Iliff and Crook. Power from the array will feed directly into the Platte Substation and into Highline’s distribution.

Stay informed about the positive effects of this solar project with future issues of Energy Innovations brought to you by CREA.

Reasons You May or May Not Want an EV for Christmas

By Paul Wesslund

Wondering if an electric vehicle is a good gift idea for you or your significant other this Christmas? The answer could depend on where you live.

Electric vehicles account for just 1.2 percent of the U.S. vehicle market, but sales are booming, growing 25 percent last year. And they’re getting better and cheaper as researchers improve the batteries that power them. Here’s a guide to help you decide if an electric car is for you — or if you just want to be smarter about one of the next big things in energy.

The first thing to realize about electric cars is they can drive more than enough miles for you on a single charge, even if you live out in the wide-open countryside.

LOCATION ISSUE 1: THE DISTANCE MYTH
Try keeping track of your actual daily use, advises Brian Sloboda, a program and product manager at the National Rural Electric Cooperative Association.

“If you’re an insurance salesman, you’re logging a lot of miles, so an electric car’s not going to be for you,” he says, noting that a typical range for an electric car today is more than 100 miles, and ranges of 150 to 250 miles are becoming common. “But if you look at how many miles you drive in a day, for most people in the United States, even in rural areas, that number is under 40 miles per day. So if your car has a range of 120 miles, that’s a lot of wiggle room.”

According to the Federal Highway Administration, the average American drives 25 miles per day, and for rural areas that average is 34 miles a day.

Sloboda says another reason it’s worth thinking realistically about your daily mileage comes from the most likely way an electric car would be refueled. When an electric car is done driving for the day, you can plug it in to recharge overnight. Essentially, you’re topping off the gas tank while you sleep, giving you a fully-charged battery every morning.

There are three ways to charge an electric car:
Level 1 — The simplest charging technique is to plug the car into a standard home outlet. That will charge the battery at a rate that will add two to five miles to its range each hour. That’s pretty slow, but Sloboda notes the battery might start the charging session already partly charged, depending on how far it is driven that day.

Level 2 — Faster charging will require a professional installer to upgrade the home’s voltage for a unit that will add between 10 and 25 miles of range for each hour of charging — a rate that would fully charge the battery overnight. Sloboda says installing a Level 2 charger in a house or garage would run $500 to $800 for the equipment, plus at least that much for the labor. Timers can also be used to charge the vehicle in the middle of the night when electric consumption is typically lower.

Level 3 — DC (direct current) fast charge requires specialized equipment more suited to public charging stations and will bring a car battery up to 80 percent of capacity in 30 minutes. Sloboda warns this high-speed technique should only be used for special long-distance driving, since it can degrade the battery over time. That’s also why DC chargers shouldn’t be used to bring the battery up to 100 percent.

LOCATION ISSUE 2: OFF-PEAK ELECTRIC RATES
What you pay to charge your electric car could also depend on where you live, Sloboda says. He advises checking to see whether your local electric co-op offers a lower rate to charge an electric vehicle overnight, when the utility has a lower demand for electricity.

“It’s different depending on where you are in the country,” Sloboda says. Some local co-ops have fairly stable electric demand throughout a typical day, so they may not offer a special electric vehicle rate. He says there are areas of the country where the on-peak, off-peak difference in price is extreme, so it might make financial sense for the utility to offer an overnight charging rate.

Another factor affecting the economics of an electric car is, of course, the cost of the vehicle.

“These cars are really in the luxury and performance car categories,” Sloboda says. As electric cars improve, projections put their cost coming down to match conventional vehicles by about the year 2025. But today, the average electric car costs close to $40,000, compared with less than $30,000 for several internal combustion engine vehicles.

LOCATION ISSUES 3 AND 4: ENVIRONMENT AND GEOGRAPHY
For many people, one of the biggest selling points for electric cars is their effect on the environment, and that can also depend on where you live.

The sources of electricity for a local utility vary across the country — some areas depend heavily on coal-fired power plants, others use larger shares of solar or wind energy. One major environmental group analyzed all those local electric utility fuel mixes and determined that, for most of the country, electric vehicles have much less of an effect on the environment than conventional vehicles. That study by the Union of Concerned Scientists shows that in the middle part of the country, driving an electric vehicle has the equivalent environmental benefits of driving a gasoline-powered car that gets 41 to 50 miles per gallon. For much of the rest of the country, it’s like driving a car that gets well over 50 miles per gallon.

“Seventy-five percent of people now live in places where driving on electricity is cleaner than a 50 mpg gasoline car,” the report from the Union of Concerned Scientists states.

Other local factors that will affect an electric car’s performance include climate and geography, Sloboda says. The range of the vehicle will be affected by whether you regularly drive up and down mountains or make a lot of use of the heater or air conditioner.

Sloboda concedes that electric vehicles are not for everybody. One limit to their growth is that no major carmaker currently offers an especially popular choice: a pickup truck. Although, the development of electric pickups is under way at Atlis Motor Vehicles and Workhorse group, and discussions show Tesla is considering developing an electric pickup as well.

Sloboda suggests possible advantages of an electric pickup: a heavy battery in the bottom would lower the center of gravity for better handling, and at a remote work site the battery could run power tools.

Paul Wesslund writes on consumer and cooperative affairs for the National Rural Electric Cooperative Association.