Batteries are Booming

From EVs to solar energy, innovations in energy storage are changing the game

By Paul Wesslund and Amy Higgins

If your smartphone battery has become a large share of your daily thoughts, just wait — the battery market is booming.

Innovators are now developing washable and bendable batteries to heat your gloves or be sewn into athletic wear to help track your exercise routine.

Electric utilities are using batteries for slightly more practical reasons — to make electricity more reliable and more compatible with renewable energy sources. Also, the booming electric vehicle market is made possible by dramatic advancements in battery technology.

Analysts estimate the world battery market value at more than $100 billion and project it will grow more than 10% annually over the next five years. People need batteries for their phones, laptops, power tools, watches, EVs and more, and they want them to last longer. They want them smaller. They want them cheaper. And researchers and entrepreneurs are busy meeting those demands.

EVs Elevated
EVs, which run on large, rechargeable batteries, are a leading example of the trend. Ten years ago there were hardly any EVs on the road, but in 2020 EV sales hit 3 million and now there are 10 million on the road worldwide. That growth is expected to continue.

Manufacturers around the world plan to spend more than half a trillion dollars on electric vehicles and batteries in the next eight years. The Kansas City Assembly Plant shown here is Ford’s first U.S. plant to assemble both batteries and EVs. Photo Source: Ford

Six of this year’s February Super Bowl ads featured EVs, and manufacturers around the world plan to spend more than half a trillion dollars on EVs and batteries in the next eight years. In the U.S. alone, 13 EV battery manufacturing plants are expected to open in the next five years.

The battery bandwagon brings strong incentives for investments to make batteries even stronger so EVs can go farther and phones can hold more apps and feature fancier cameras. This cycle of innovation is cutting battery costs, too. The price of the most popular type of rechargeable battery is down more than 90% from what it was 10 years ago.

Taking EVs to a new level is La Plata Electric Association in Durango, which revealed Colorado’s first vehicle-to-grid EV school bus in December 2021. The electric-powered bus houses a battery that can travel up to 200 miles on a full charge, but the battery can also store energy that in turn can be used for LPEA to draw power from during peak energy hours.

“When fully charged, the bus stores enough electricity to power 30 average single-family homes, or 100 energy-efficient homes, for a few hours,” according to an LPEA press release.

Batteries Aid Renewable Energy Use
Utility use of large batteries is adding efficiency and reliability to the nation’s electric grid. In 2019, the number of large-scale battery systems in the U.S. increased 28%.

Utility use of large battery systems, such as the Tesla Megapack shown here, is adding efficiency and reliability to the nation’s electric grid. Photo Source: Tesla

For Colorado’s electric cooperatives, large-scale batteries started in 2018. With peak shaving and innovation in mind, Brighton-based United Power went live with its Tesla battery storage facility, which, the co-op touts, can store enough energy to power up to 700 homes simultaneously.

Utilities, including electric cooperatives, use these batteries in several ways. They can smooth out voltage and frequency differences that damage equipment and affect power quality. Batteries can also make better use of the intermittent nature of renewable energy sources. By storing excess solar energy produced during the day when electric demand is low, batteries can make that sun power available for use at night when electric demand is high.

Utility-scale battery capacity tripled in the past five years, including 35% in 2020 alone. The U.S. Energy Information Administration reports electric utilities will have 10 times the battery capacity in 2023 that they had in 2019.

Much of that increase, the EIA says, comes from battery systems located near large solar projects, making it easier to store electricity produced by solar panels.

One especially innovative use of batteries came in 2020 when a heat wave strained California’s electric supply. The state’s energy manager asked businesses and homeowners with batteries to supply emergency power. More than 30,000 responded, including backup power owners and EV charging providers.

With the assistance of its 140-kilowatt, 446-kilowatt-hour Tesla Powerpack battery, Fort Collins-based Poudre Valley Rural Electric Association’s Red Feather Lakes microgrid can provide electricity to its consumer-members for up to 8 hours during power interruptions.

Holy Cross Energy in Glenwood Springs is working on a solar and battery energy storage project with Ameresco, an organization that specializes in energy efficiency and renewable energy, to install 4.5 megawatts of solar power and 15 megawatt-hours of battery energy storage. This clean technology will be housed at Colorado Mountain College’s Spring Valley Campus leased by Ameresco, which will then sell the power generated to HCE, assisting HCE with its goal of 100% renewable energy resources by 2030.

Homeowners can even supplement their electric service with their own backup batteries. Tesla and other companies make suitcase-sized batteries designed to hang on a wall for reserve power in case of a storm or to pair with rooftop solar panels to store sun power for later use. United Power offers this service to its consumer-members, allowing them to connect their personal battery storage system to the electric co-op’s distribution system.

Innovators are also working on new types of batteries for everyday use. Low-cost, flexible power sources could be part of clothing or wristbands. Wearable electronics are a hot market, and innovators and investors see the potential.

Whether used for making electricity more reliable or to create some fun new gadget, battery technology will continue to boom.


Paul Wesslund writes on consumer and cooperative affairs for the National Rural Electric Cooperative Association. Amy Higgins writes electric co-op news for CREA.

SMPA Helps County Obtain Microgrid Grant

San Miguel Power Association, an electric cooperative based in Ridgway and Nucla, recently partnered with San Miguel County to install a microgrid. A microgrid is an “island” system with electricity sources that can operate independently to provide electricity when the greater grid loses power.

SMPA helped the county apply for a Colorado Department of Local Affairs grant and it received $1.1 million to build two solar PV and energy storage microgrid systems. The co-op helped the county with solar and battery system design support, critical load determination, grant writing support, beneficial electrification rebates and interconnection and net-metering agreements

These innovative microgrid projects benefit two crucial parts of the San Miguel County sheriff’s department: the annex building in Norwood and the Ilium sheriff office near Telluride. These two sites are perfect examples of how microgrids can maintain 100% reliability for mission-critical loads. Mission-critical loads for the two sites were defined as building lighting, receptacles, communications and internet, control rooms, IT servers and radio rooms, and protective custody and lock systems.

The resiliency these microgrids provide the county offers peace of mind and security for the county during crises, outages and emergency situations, such as the myriad disasters Mother Nature can serve up in the mountain areas SMPA serves.

Hydropower from 100-Year-Old Dam

San Luis Valley REC recently celebrated 10 years of drawing renewable hydropower from the 100-year-old Humphreys Dam in Creede. The 90-foot concrete arch is like a miniature Hoover Dam. It was modernized 10 years ago into a cost-effective facility with a single-phase generator capable of generating up to 340 kilowatts of hydropower. It supplies about 1% of SLVREC’s renewable energy.

Drones Now Help Co-op Serve Consumer-Members

Buena Vista-based Colorado electric cooperative, SDCEA, was recently featured in a National Rural Electric Cooperative Association podcast that discussed the use of drones in the electric utility industry.

NRECA research and survey data shows that over 300 electric co-ops in the U.S. use drones on their system. And with its rugged territory and sometimes difficult-to-access equipment locations, SDCEA is a prime example of how this rapidly changing UAS technology can assist in ways previously never thought possible.

Bill Hovanec, GIS lead at SDCEA, stated in the interview that the drone program has been helping the co-op for 18 months. He said it’s a cost-effective way to get a lot of data that would otherwise be unavailable. Co-ops are typically smaller organizations with smaller budgets, but over the years, drone costs have gone down in price, and insurance, regulations and training expenses are also decreasing, making a robust drone program more accessible.

“Most rural co-ops can afford a couple drones to test and they bring back positive results,” Bill said. At SDCEA, the drone data collected comes directly back to GIS; operations and line crews can pull up the pictures of what they see and get what they need before they even go out to make repairs or work on maintenance.

Bill appreciates the functionality with drones and uses in GIS every day. The more Bill learns about UAS technology and capabilities, the more he sees how major weather events and natural disasters can benefit from drone data. Events such as wildfires and snowstorms the service area is prone to may limit access to equipment, but drones give an “eyeball on it.” An important part of SDCEA’s overall maintenance plan to improve reliability and safety is wildfire mitigation. Bill stated in the interview that drones help with data collection for trouble spots on the system.

Mission and flight planning, as well as analyzing and processing the data is the most time consuming for any electric cooperative drone program. The actual flight may take an hour, but flight planning and data processing is more important and can take about twice as much time.

Bill hasn’t had too many bad experiences when he or his pilot crew is flying the co-op’s drone. Some consumer-members get frustrated and question privacy, but he said most people are more interested than upset. SDCEA knocks on doors prior to a flight to let consumer-members in the flight path know what the co-op is doing beforehand. And just like line crews, the drone team maintains safety practices and gets the aircraft on the ground before they answer any questions.

SDCEA’s program currently has three pilots and one drone and the co-op is hoping to expand its drone inspection program.

Capturing Carbon

By Katherine Loving

Providing reliable, affordable electricity is the top priority for Colorado’s electric cooperatives. Co-ops and other electric utilities continue to incorporate additional energy generated from renewable sources, but until these technologies fully mature, fossil fuels remain a part of our overall generation mix to ensure power reliability.

As the U.S. moves forward with carbon reduction goals, electric cooperatives are also looking for ways to provide clean energy and offset the carbon that’s generated during power production. Capturing carbon emissions at their creation source is one of those approaches.

The federal government is making carbon capture a funding priority in 2022. The Infrastructure Investment and Jobs Act passed in 2021 provides $927 million for large, commercial-scale pilot projects as well as $3.5 billion for six demonstration projects at coal and natural gas plants.

Carbon capture involves a series of steps to remove carbon dioxide from its original source to prevent it from reaching the Earth’s atmosphere. During the capture step, CO2 is removed either before or after combustion.

Post-combustion capture is the most common method used at existing power plants. After electricity is generated, the CO2 is removed from the gas mixture found in a plant’s flue.

In pre-combustion capture, the fuel sources are heated with pure oxygen (or steam and oxygen) to release CO2.

Once captured, the CO2 is transported to its next destination. Typically, CO2 moves as compressed gas in pipelines but can also be transported by tanker trucks or ships.

Captured CO2 can be injected into geological formations or recycled for other uses.

One appeal of carbon capture is the abundance of underground natural storage locations, such as deep aquifers, porous rock and unproductive coal mines. The U.S. Geological Service estimates the U.S. has the potential to store 3,000 metric gigatons of CO2, the equivalent of centuries worth of emissions.

Research on how to recycle CO2 is ongoing, but established practices include using the gas in enhanced oil recovery, growing fish food from lab-grown bacteria that feed on CO2 and creating carbon-negative concrete or other carbon-based materials.

As promising as carbon capture sounds, the costs and risks limit the technology’s ability to be implemented on a larger scale. Post-combustion capture often requires expensive retrofitting of power plants. Pre-combustion capture, while more effective than post-combustion, has been limited due to high costs of equipment and pure oxygen.

In addition to these costs, the processes require a large amount of energy. Transportation of the gas increases in cost for longer distances between the source and destination, making plants located far away from sequestration locations less feasible. Sequestration also carries the concern of CO2 leaks, which would negate the effort to remove it from the atmosphere.

Despite these hurdles, carbon capture is seen as an important technology in reducing emissions.

In 2015, XPRIZE, a technological development competition, kicked off with the goal of awarding $20 million to develop new and emerging technologies that utilize CO2. The competition was based on how much CO2 was converted and the economic feasibility of the project.

XPRIZE concluded in 2021, and the winning project was a carbon-negative concrete created by a team of UCLA researchers called CarbonBuilt. The research team conducted tests at Basin Electric Power Cooperative’s Integrated Test Center in Wyoming to turn flue gases and fly ash into carbon-negative concrete. The process reduces the carbon emissions of concrete production and traps additional carbon long-term within the final product.

There will be more emphasis from the federal government in 2022 on carbon capture and storage. In addition to the demonstration projects from the infrastructure bill, the Slowing CO2 and Lowering Emissions (SCALE) Act was introduced in 2021 to provide funding to overcome expansion barriers. The SCALE Act aims to reduce costs by financing scaling projects for pipeline infrastructure, creating regional storage infrastructure, and providing grants for creating products derived from large-scale capture.

Capturing carbon is an important tool in reducing CO2 emissions generated from fossil fuel use. When this emerging technology can be deployed on a larger scale, the future of carbon capture will look much more promising.


Katherine Loving writes on consumer and cooperative affairs for the National Rural Electric Cooperative Association.

 

United Power Installs New EV Charger

Bridging a 30-mile gap between electric vehicle DC fast-charge stations along I-25, United Power recently installed a new public charging station.

The new ChargePoint station is conveniently located along the northern corridor of I-25 between Thornton and Loveland.

Located at its Carbon Valley service center, this is the third public EV charger installed by the Brighton-based electric co-op. The co-op’s other two stations are located at its Coal Creek office in Golden and a gas station in Keenesburg. United Power’s strategic EV charging locations are helping make EVs more practical for Coloradans and more accessible for people living in rural communities.

Highline Electric Offers App for Members

Holyoke-based electric cooperative Highline Electric Association released its redesigned app this month. Available for download on Google Play and the App store, the co-op provides this app so that its consumer-members have easy access to their utility account.

This is the second iteration of an app HEA has developed, and some new features are included.
Consumer-members can make payments through the app, get notifications from the co-op, view an outage map and report an outage, view past and current billing statements, look at usage history and contact the co-op directly from the app. “Overall, this version is more modern, easier to use and navigate,” HEA Member Services Specialist Jessie Heath said.

This is an innovative way for Highline’s consumer-members to keep up with their electric cooperative.

Electric Cooperatives Prioritize Grid Security

Maintaining and enhancing security of the electric grid is a priority for electric cooperatives — and Colorado’s electric cooperatives are part of a larger network helping to make this happen.

Nationwide, electric co-ops partner with each other and government entities to provide cybersecurity training, secure resiliency, and develop technology to improve grid safety and efficiency.

As reported previously by CREA, tools like Essence 2.0 have been developed by the National Rural Electric Cooperative Association. The national association still has frequent interaction with the Department of Energy to work on innovative technologies, tools and resources that modernize co-op systems and maintain grid resilience.

Three Interesting Facts About Electricity

Electricity turns dark into light, makes hot foods cold and cold foods hot, washes the dishes and searches the internet. It is essential to our everyday lives, so much so that we rarely think about it. But behind the scenes, interesting things are happening.

Here are three interesting facts about electricity that cause even some experts to scratch and shake their heads.

1. Electricity must be used or stored after it’s generated.

A rechargeable battery stores electricity — more on that later. But the kind of electricity you use in your home needs to be used after it’s generated.

It’s true. Electricity produced from power plants, solar panels, wind turbines and hydro dams in the U.S. needs to be perfectly timed for when you decide to cook dinner, wash clothes or watch TV. The national grid, made up of power generators, wires and substations, is an incredibly complex network that makes electricity flow smoothly.

A vast and intricate system of devices controls that power flow in a precisely balanced way so that when you flip a switch calling for additional electricity, somewhere else a power source ramps up to provide the additional electricity you require.

It’s one reason utility operators must be strategic when adding renewable energy to the nation’s fuel mix — a coal or natural gas plant can ramp generation up or down fairly quickly to meet changing energy demand. Solar energy and wind power depend more on the whims of Mother Nature, which adds an extra challenge to power management. However, technology advances are making this challenge easier to deal with and more large-scale battery storage is also helping.

Big batteries offer another way for electric utilities to better balance the flow and timing of electricity and large-scale battery storage technology is improving rapidly. A few of Colorado’s electric cooperatives have incorporated battery storage into their distribution systems and more storage is being planned. Wider use of large utility-scale batteries will make it much easier to add more solar and wind energy to the grid, allowing electric co-ops and others to store energy that’s generated when it’s breezy and sunny for use at night and during calm weather.

2. Power out? Blame a squirrel.

While severe weather causes most outages, if it’s nice out and your electricity goes off, it could be caused by a squirrel.

We all know to play it safe around electricity, but squirrels don’t. They scamper and chew around transformers, substations and utility poles where they can disrupt high-voltage equipment, shutting down power for you and your neighbors.

We all know to play it safe around electricity, but squirrels don’t. They scamper and chew around transformers, substations and utility poles where they can disrupt high-voltage equipment, shutting down power for you and your neighbors.

But it’s not just squirrels. Snakes, birds and other critters can find their way into dangerous places. There’s no official record-keeping of wildlife-caused power outages, but estimates run as high as 20%.

Electric utilities are constantly devising new ways to keep wildlife away from dangerous electrical equipment—the resulting power disruptions are inconvenient for us energy consumers, and almost always fatal for the animal.

3. Highways could charge electric vehicles in the future.

If researchers have their way, electric vehicles wouldn’t need to plug in — they could charge while they’re being driven.

“Wireless dynamic charging” projects are underway around the world. The idea is similar to wireless chargers you can buy for your home electronics, the kind you can set near a charger rather than actually plugging in the smartphone or other device.

Wireless dynamic charging projects are underway around the world. Photo from Pixabay contributor Leon Wallis. *Image edited in Canva to show dynamic charging lane.

Charging cars while they’re driving along the freeway is of course a lot more ambitious. But some developers predict that within five years, in addition to today’s special high-occupancy-vehicle lanes for rush-hour traffic in large cities, there could be stretches of vehicle-charging lanes.

Futurists expect electric trucks as the most likely users of wireless charging lanes. Most electric cars, after all, can charge overnight in a residential garage. Wireless dynamic truck charging could keep the deliveries rolling rather than having drivers sitting and drinking coffee for the several hours it could take a conventional plug-in to get trucks back to full power.

Electricity is such a basic part of our everyday life, so it’s easy to forget about it. But every now and then it’s good to think about all its benefits and mysteries. That awareness can help make sure we pay attention to safety precautions, but sometimes it’s good just to be amazed.


Paul Wesslund writes for the National Rural Electric Cooperative Association, the national trade association for the nation’s electric cooperatives.

Cooperative Program Enhances Local Small Businesses

In an innovative approach to enhancing its rural small business community and economy, Pueblo West-based San Isabel Electric offers a unique program.

The electric co-op distributes pass-through loans with 0% financing for qualifying projects to local businesses, nonprofits and public entities. This is through the U.S. Department of Agriculture’s Rural Economic Development Loan and Grant program.

Here’s how it works: The USDA provides the loan to San Isabel Electric, which then passes the loan through to local businesses in its service territory. The local business or nonprofit is responsible to repay the loan to SIEA, and the cooperative is then responsible for repayment to the USDA. San Isabel Electric may lend up to $1.5 million in total loans, and up to $300,000 in revolving loans.

The most recent recipient of a pass-through loan from SIEA is My One Hour Office, a coworking space in Walsenburg. Owner Mary Jo Tesitor said in a recent press release, “With a manageable low-or-no interest loan of less than $20,000, a small rural business can complete upgrades and improvements that may have been sitting on the back burner for a while.”

Tesitor believes the revolving loan program for small businesses can make a real difference for rural Colorado. And “is a great use of USDA funds. Small business owners will pay back into the fund, recirculating that money and growing the economy,” Tesitor said. She plans to use the REDL&G program funds to purchase virtual video conferencing equipment, a Wi-Fi management system and office furniture.

A previous REDL&G loan was issued to the La Veta Fire Protection District to support construction of its new fire station. San Isabel Electric is continually working with local rural businesses, nonprofits and public entities to process REDL&G applications. The co-op is also actively seeking a nonprofit or public body partner in the service territory to establish a revolving loan fund. An RLF would allow San Isabel Electric to issue these types of loans more quickly, without having to wait for USDA approval.

“To set up a revolving loan fund, we must issue a large loan to a nonprofit or public body entity, like a hospital, or local government organization. As they pay it back to us, we bank it, and then re-lend it. We can keep it going as long as we wish, as long as we’re following the USDA’s rules,” Laura Getts, San Isabel Electric’s business development manager said.

This is just one example of how a Colorado electric cooperative enhances community resilience through innovative programs.