Hello Hydropower Energy

By Kylee Coleman

Electricity generated from hydropower tells an interesting story about today’s energy trends that’s deeper than just water flowing over a dam.

It’s a story about a renewable resource that once generated nearly a third of the nation’s electricity — a share that has declined dramatically over the decades with the rise of nuclear power, natural gas, wind and solar.

Although hydropower is less a part of our energy picture than it used to be, it’s still an important part of today’s energy mix. Hydropower projects from Tri-State G&T and Western Area Power Administration, small hydro projects and even micro-hydro projects all work together to help power homes, farms, ranches and businesses in Colorado.

Hydropower works by converting falling water into energy. Historically, Colorado has seen this played out in different applications, such as Crystal Mill, which used a horizontal water turbine to power an air compressor for miners operating machinery and tools in nearby silver mines in the late 1800s. It has also come in the form of large dams built on a river both for flood control as well as to channel the water through large turbines that generate electricity.

According to the United States Department of Energy, hydropower generates roughly 7% of the nation’s electricity — and all but two states receive at least some of their electricity from hydropower.


While flowing water might seem to be an endless energy source, hydropower has a complicated relationship with the environment.

Some question hydro’s claims as a provider of clean energy since the larger projects involve building a huge dam that floods a river valley to create a reservoir. But the Environmental Protection Agency classifies hydro as a renewable resource, and the DOE lists hydroelectricity as the source of 31% of the nation’s renewable electricity.

Recent weather patterns also seem to be redefining what renewable energy means. Hydroelectric generation fell 9% during 2021 because of drought conditions across the country and the West.


Still, hydro has a lot going for it. It’s one of the cheapest forms of energy, especially after the initial investment costs. Its day-to-day operations don’t produce greenhouse gases. Utility grid operators appreciate its flexibility as a source of electricity that can be turned on and off relatively easily, especially compared with fuels like coal, nuclear, solar and wind.

Those assets have raised interest in adding new hydro projects. Nearly $8 billion has been invested over the past 15 years to add enough capacity to power 1 million homes. While many hydro dams have been around a long time and are ready to be retired, new projects are planned, including modernizing older hydro facilities. DOE reports proposed projects that could generate enough electricity to power yet another 1 million homes.

In addition to upgrading existing sites, the DOE projects that at least 200 “non-powered dams” could have generators added. Out of about 90,000 dams in the U.S., only about 2,200 generate electric power.

Those efforts will be getting a boost from the federal infrastructure law passed in 2021. That measure includes more than $2 billion in hydropower incentives for river restoration and dam rehabilitation.


“Small hydro” is developed on a scale meant for local communities and industries and mostly contributes to a regional grid. Small hydro projects are defined by the DOE as plants that generate between 100 kilowatts and 10 megawatts.

In Colorado, small hydro can have a large effect on powering communities. Gunnison-based electric co-op GCEA has been working in partnership with the Uncompaghre Valley Water Users Association to install a 500 kW small hydro project at the base of Taylor Park Dam.

A small hydro facility at Taylor Dam is slated to operate at 500 kilowatt nameplate capacity.

Taylor River Hydro, LLC has been pursued as an opportunity to provide cost-effective, locally-generated, carbon-free electricity from an existing resource (the Taylor Park Dam) to the co-op’s consumer-members. “All energy produced at the new hydroelectric facility will be consumed by GCEA members within the co-op’s distribution system,” GCEA Strategy Execution Specialist Matt Feier said.

Taylor River Hydro is designed to operate at or near the 500kW nameplate capacity 24 hours every day, 7 days per week, 365 days per year (minus downtimes for potential repairs and maintenance). Specific fluctuations in power production will be determined by the height of the reservoir at any given time.

“The facility should generate 3,812,733 kWh of electricity per year, on average,” Feier noted. “This is enough energy to power approximately 475 average GCEA-served homes each year.”

Feier explained that the Taylor Park Dam and Taylor Park Reservoir were originally constructed in 1937 for the purposes of agricultural water storage and flood control. The Taylor Park Dam has never incorporated a hydroelectric generation facility, though the dam structure was originally designed to accommodate one.

The dam is owned by the United States Bureau of Reclamation and is operated by the Uncompaghre Valley Water Users Association. UVWUA retains first-fill water rights to water within the Taylor Park Reservoir, and GCEA maintains and operates the electric distribution system that serves the Taylor Park Dam and surrounding areas.

Taylor River Hydro has been working to see the new facility completed and commissioned by December 31, 2023. But the lead time required for a highly specialized, precision valve that needs to be individually manufactured and installed has pushed the completion date to mid-February 2024.

Drought conditions are not expected to impact the generation capacity or function of Taylor River Hydro. “It is designed as a 500 kWh facility, and the Taylor River and Taylor Park Dam/Reservoir can accommodate up to 4 MW of electricity generation during high flows. As such, the new facility is expected to operate at or near full capacity year-round, even in drought conditions,” Feier said.

Hydropower doesn’t always get the attention of flashier advancements like wind and solar technologies, but it’s been around for 2,000 years, since the Greeks used it to turn wheels that ground wheat into flour.

Only the future will tell how much of a role hydro will play, but its time-tested techniques and green energy benefits promise it will still be providing some level of power 2,000 years from now.

Kylee Coleman, editor of Colorado Country Life, writes about issues affecting Colorado’s electric cooperatives and innovations in the electric industry.

Learn about some of Colorado’s past micro hydro projects in this 2017 article.


Safeguarding Wildlife and the Grid

By Amy Higgins
All photography provided by Rick Harness, EDM

Our nation’s bird populations have been a topic of concern since the early 1900s when the Migratory Bird Treaty Act was enacted to control market hunting. As decades passed, additional legislation was added to protect birds from modern-day human conveniences, safeguarding wildlife while also protecting the grid.

This came to the forefront when, in the late 1990s, the U.S. Fish and Wildlife Service prosecuted Moon Lake Electric Association for violations of the Bald and Golden Eagle Protection Act and the MBTA. Although MLEA is based in Utah, it’s notable that a large portion of their service territory is in Colorado, which is where eagles were found electrocuted.

Cognizant of bird electrocutions on their lines, electric co-ops reached out for guidance. Colorado cooperatives banded together through CREA, their trade association, and contacted utility consulting firm EDM International’s Certified Wildlife Biologist Rick Harness, who stepped in to help develop Avian Protection Plans or APPs. Today, every electric cooperative in Colorado has an Avian Protection Plan. In fact, “[Colorado] was the first state to do a holistic program,” Harness said.

Safeguarding Wildlife: APPs Take Flight

At a consulting firm in Missoula, Montana, Harness first witnessed avian electrocutions from power lines — he would stumble on a dead or injured bird under a power line. Eight years later, he came to Fort Collins to work at a consulting firm and go back to school to earn his master’s degree.

For his master’s work, Harness reached out to rural electric cooperatives, researched their services structures, identified at-risk bird species and recorded how frequently electrocutions occurred. This allowed him to assess the population impacts of power line mortality and came up with recommendations to help protect birds and strengthen the reliability of electric service.


A golden eagle sits on an unprotected pole, which needs a conductor cover added.

It was around 1997 that the Fish and Wildlife Service decided that distribution lines caused an unacceptable level of bird mortality and that the problem wasn’t going away. Harness’s experience and knowledge earned him a role as a liaison between MLEA and the FWS, and a key role in the development of an early, precedent-setting APP.

Using his thesis work as a guideline, Harness concluded that it wasn’t necessary to retrofit every power pole in a utility’s distribution system. Instead, utilities could identify the poles and habitats that presented the greatest risks and put their dollars there.

“Moon Lake was happy because they didn’t have to do wholesale retrofitting. The Fish and Wildlife Service was happy because we were bringing science into it, and it was a third-party person that was taking responsibility for it,” Harness said.

Soon after, CREA contacted Harness and a statewide effort was proposed to develop a more streamlined process for Colorado electric cooperatives.


A Ferruginous hawk rests on a 3-phase pole protected with a conductor cover on the center pin.

EDM started at Empire Electric Association in Cortez. Once the report was developed, it was vetted and approved by the FWS; then the rules were applied statewide. It took approximately three years for EDM to inspect all of the Colorado electric cooperatives’ systems and develop APPs.

As word got out about the APP, additional utilities followed suit and contacted EDM, including the Public Service Company of Colorado (Xcel Energy) and the Air Force Academy. “There’s excellent coverage across the state for Avian Protection Plans, and CREA was at the center of that effort,” said EDM Project Manager Duncan Eccleston.

Taking Wildlife Under Wing

To develop an APP, the utility’s current standards, structures and land are analyzed and a report of the consulting firm’s findings and recommendations is presented to the utility. Priority is given to high-risk poles and habitats where electrocutions and/or collisions are most likely to occur.

Recommendations for safeguarding wildlife may include adding insulation, creating additional spacing, if possible, or adding the proper products to existing structures so wildlife can avoid hazardous contacts.

golden-eagle-crea-mar-2023The utility’s APP also includes a reactive program so it can quickly mitigate a problem when it arises and a proactive risk assessment to determine the biggest threats to the system and the surrounding environment, including wildlife.

These recommendations are invaluable and welcomed. After an engaging lineman training visit, SDCEA in Buena Vista was prompted to ask Eccleston to make annual visits going forward.

“The co-op lineman is really the focus because they know more than anybody and they see more than anybody,” Eccleston explained. “They have a lot at stake; they really do care.”

“We know [the APP] is not going to eliminate wildlife interactions, but at least it will minimize the impact,” said Holy Cross Energy VP of Operations Cody O’Neil. The Glenwood Springs electric cooperative used its original APP until around 2008, when it began updating and amending its plan. More changes were made in December 2019 to better align with current best practices.

“We believe that our outage numbers have decreased so our system reliability has increased,” O’Neil said. “We don’t have as many — part of this could be technological advances in some other areas as well — but we don’t have as many unknown outages as we did 20 years ago.”

In 2019, Grand Junction–based Grand Valley Power worked with Colorado Parks and Wildlife to build a nest for a pair of ospreys that claimed a pole in De Beque. Using APP guidelines, GVP linemen installed a new base for their avian members, waited, and then revisited the site to find the ospreys nesting in their new home.

APPs: More than Meets the Eye

“I think one misnomer that unfortunately a lot of folks attribute to avian protection is that it only benefits birds,” O’Neil said. “There are quite a few other critters out there that end up not getting electrocuted because we use these tactics.”

Raccoons. Squirrels. Really, any nonflying animal has added shielding with APPs. APP standards and efforts also help prevent wildfires and wildfire-caused outages while safeguarding wildlife. For example, if a squirrel climbs onto a transformer that’s not up to APP standards, it could get electrocuted, fall to the ground smoldering and cause the grass to ignite.

Eccleston explained, “The other thing that can happen is, even if they don’t fall onto the grass, they could trigger an expulsion fuse — the fuse swings open and it sends out a bunch of molten gas and sparks that could also start a fire.”

Colorado’s electric co-ops cherish wildlife and aim to protect the beautiful outdoors while also maintaining a reliable electric infrastructure for consumer-members.

Amy Higgins is a freelance writer who has reported on issues that affect electric cooperative consumer-members and their surrounding environments for more than a decade.


Electric Books for Kids

By Amy Higgins

Electricity is responsible for our hot morning coffee and daily meals. It keeps us cool under the sizzling sunshine and warm in wintry weather. And in the 21st century, the advancements go several steps further: Electricity delivers news and messages to the palms of our hands, quickly charges our vehicles and tools and stores critical information. And the innovations keep coming. Who knows what the future holds with the power of electricity? Electric books for kids help demonstrate how electricity came to be and how it has grown into the powerhouse it is today.

When we explain to our younger generations how life worked without the instant access we have to electricity today, it can sound like far-fetched fiction. Yet, for some of our older population, life without electricity was indeed the narrative in their youth, particularly for those living in rural communities.

As time goes on, there will be fewer recollections of life without electricity, so recorded accounts are valuable. Colorado Country Life is bringing to light three electric books for kids that will help young readers learn some of America’s history with electricity with the added perk of amusing anecdotes.

Electric Books for Kids: Fiction

year-the-lights-came-on-crea-feb-2023THE YEAR THE LIGHTS CAME ON

By Terry Kay

The boys in the Our Side Gang are befuddled by the big-time clash between them and the Highway 17 Gang, until Colin Wynn, the narrator of the story, gets the skinny from his older brother Wesley.

It’s electricity. “Bingo!” 12-year-old Colin thinks. By golly, electricity must be the source of the social upheaval that overshadows him and his friends — all the folks of the rural Georgia town, in fact.

With their lickety-split lighting-speed, cushy kitchen appliances and fancy farm equipment, electricity brought power (literally and figuratively) and privilege to their neighbors on the other side of Highway 17, while the Our Side Gang and their rural town of Emery was left in the dark. But the Rural Electrification Administration was coming to Emery, and that will change everything. Colin is sure of it.

The Year the Lights Came On by Terry Kay takes readers along for the adventures, skirmishes and difficulties that the Our Side Gang encounters in 1947 and highlights the strength of steadfast friendships through Colin’s narrative. The Highway 17 Gang harbors ill-conceived notions that the Our Side Gang is “less than” simply because they light their homes with candles and oil lamps rather than incandescent lightbulbs and wash their clothes by hand instead of an electric washing machine.

The Year the Lights Came On is a coming-of-age tale with the REA’s arrival to the rural town of Emery thinly veiled in the storyline. Kay’s character development is compelling as he paints pictures throughout the book with great use of the five senses as well as humor. Originally published in 1976, Kay reworked the novel in 2007 to tighten it up and make it “appropriate for any age group.” With the latter in mind, readers should take note that there are terms in the book that may have been typical in the 1940s but are considered offensive in 2023.

wish-upon-a-crawdad-crea-feb-2023WISH UPON A CRAWDAD

By Curtis W. Condon

Ruby Mae Ryan is a feisty 12-year-old girl living on a farm with her family in rural Oregon. The hard-working townspeople in their community created an alliance and have been busy hoisting poles, draping wires and boring holes into the structures of homes and buildings for electrical outlets. They call this group an REA, a rural electric association, and it is owned by the entire town with one goal in mind: to bring electricity to an area where municipal power plants refuse to venture.

Ruby can’t wait. Her best friend Virginia and her friend-turned-nemesis Mary Belle have had electricity in their nearby town for a while now, so Ruby knows what she was missing: a real-life stove, lights that illuminate a whole room, and washing machines that clean clothes immaculately. Ruby has worked earnestly to save money for when the lights come on — several oddball jobs, but none as lucrative as her crawdad-catching business — to buy something particularly special, but she doesn’t want to jinx it by saying it out loud.

In Wish Upon a Crawdad, young readers will take a journey with strong-willed Ruby as she navigates friendships, friction, flubs and ferreting out crawdads — that is, if she can find them before her wish slips away from her grasp. Targeted toward middle schoolers, Wish Upon a Crawdad is a sweet tale of a red-headed spitfire who will stop at nothing to make her wish come true, with many stumbles along the way.

Electric Books for Kids: Historical Rendering


By Cynthia Simmelink Becker
Illustrated by Benjamin Hummel

In 2019, CCL reviewed and wrote about Lights On! Ike Hoover Electrifies the White House, but with its delightful illustrations, elaborate research and industry-appropriate information, it bears repeating.

Lights On! takes young readers through the steps it took for Ike Hoover (not to be confused with President Herbert Hoover) to ready the White House for electric lighting. Throughout the story, Hoover navigates the impressive building though the rafters and walls to install electrical wiring, and along the way builds relationships with the White House staff, including a rapport with President Benjamin Harrison.

The late Cynthia Simmelink Becker (author and Pueblo resident) pulled out all the stops researching and writing this book for young readers. It was important to Becker that she emphasize the fashion, technology and architecture of the era.

The most challenging aspect, she said, was locating real-life representations of the electrical equipment of the late 19th century. After extensive online research and numerous phone calls, she ultimately discovered that one of Edison’s 1890s turbines was on display at the Western
Museum of Mining and Industry in Colorado Springs, an invaluable revelation and resource for her book.

Illustrator and native Coloradan Benjamin Hummel revealed the ornate details of the White House and characters with vibrant depictions, and even cleverly concealed his signature bumblebee — an homage to his last name, which translates as “bumblebee” in German — throughout the story. While written for third- to fifth-graders, older bookworms will likewise get a charge out of Lights On!

Electric Vehicles’ Impact on the Grid

By Katherine Loving

Last year saw a record increase in electric vehicle sales, and experts are predicting that many major vehicle manufacturers will only produce electric models by 2035. But what does electric vehicles’ impact on the grid look like?

A 2021 study by the Department of Energy showed that increased electrification, or replacement of direct fossil fuel use with electricity, would account for a 38% increase in electricity demand by 2050 — and EVs will play a major role in this increased electrification.

The need for more electricity will have a major impact on the nation’s grid, which means power supply and grid infrastructure must be carefully planned to accommodate the increased need for electricity.

EV charging presents new challenges in maintaining the electric grid. Fully charging an EV battery requires the same amount of electricity needed to power a home during peak energy use times. However, EV charging is a concentrated pull of energy over an extended period, which can add stress to the local power grid by increasing the amount of electricity a utility has to provide.

Additionally, the neighborhood transformer needs adequate capacity to handle the increased load. EV charging can shorten the life span of transformers by straining and overloading their capacity if they are not matched to a neighborhood’s energy needs.

Electric cooperatives are currently identifying ways to manage this new pattern of electricity use, although exact strategies will vary based on each utility’s unique needs. Analyzing energy load patterns or identifying where and when the local grid has spikes in demand can provide electric co-ops with data on where to place higher-capacity transformers. This analysis can also provide a picture of overall energy use and patterns to help forecast energy consumption for the future.

Planning system maintenance and upgrades are also part of that long-range forecasting; however, this has been recently complicated by supply chain issues for transformers with wait times that are upward of one year.

EV owners can play a role in reducing energy costs and system stress associated with charging. Some electric cooperatives offer a designated EV charging rate that you may want to consider. Typically, an EV rate incentivizes charging during the night, when electricity demand and wholesale energy rates are lower. Check with your electric cooperative to find out if it offers this incentive. Charging at night is also a great way to ease demand in your neighborhood, even without a special EV rate.

Another potential change on the horizon is a new energy peak time. EV drivers who plug in to charge as soon as they return home from work would create even more electricity demand during this busy time of day. But if EV drivers use a timer to schedule charging at night, the electricity demand could be spread over a longer period to reduce stress on the grid. This would be especially beneficial for neighborhoods with multiple EV drivers.

EVs are only expected to increase in number. Electric co-ops and EV owners both have roles to play in accommodating increased demand. If you own an EV, let your electric co-op know so it can better plan energy demand for you and your neighbors.

Katherine Loving writes on consumer and cooperative affairs for the National Rural Electric Cooperative Association.

Bringing Light to Guatemala

By Mona Neeley
Photography by Studio 1441

There will be lights this Christmas in the small, remote village of La Montanita de la Virgen, thanks to electric cooperatives in Colorado and Oklahoma who were tasked with bringing light to Guatemala. And, 16 lineworkers here in the United States will celebrate the holidays with a special appreciation for all they have.

An Electrifying Process

The lights came on for the first time in mid-September in La Montanita in the municipality of San Pedro Pinula. Life is slowly changing as the villagers enjoy the benefits of electricity.

Left to right: Nathaniel Pennell Mountain View Electric Association lineman, Trenton Jole Holy Cross Energy lineman, Clayton Shonk White River Electric Association lineman, Zeb Birch Grand Valley Power lineman

A team of 16 lineworkers, including four from Colorado’s electric co-ops, spent August 29 to September 16 in the rural Guatemalan mountain community building power lines to bring electricity to the area. The men installed 5 miles of primary line, 3.5 miles of secondary line and six transformers to extend the country’s power grid to the remote village. They also wired 81 homes, two churches and the elementary school as part of a project coordinated by NRECA International.

It was grueling work for the lineworkers, who worked without the benefits of their usual bucket trucks and other power tools. Instead, they climbed each pole with their spikes, used block and tackle configurations to lift transformers and heavy spools of wire, pulled that wire by hand across deep valleys and up mountainsides, and generally did their line work the way it was done years ago in the States.

“Bringing electricity to remote areas in developing countries takes electric cooperatives back to their roots,” noted CREA Executive Director Kent Singer. Being part of a project like this helps lineworkers appreciate where Colorado’s electric co-ops got their start, with neighbor helping neighbor to set those first poles and string the first wires.

That was how it was in Guatemala, too. The villagers were invested in this project and provided assistance where they could.

It Takes a Village

La Montanita is a remote mountain community of about 560 people located off a gravel road and up a dirt trail. Homes are spread throughout a large area that surrounds the school, church and dirt soccer field at the center of the community. Much more like homes spread out through Colorado’s rural co-op territories than a town with streets and nearby neighbors, the community, brought its people together to help the American lineworkers complete this project.

Lineworkers use pulleys and brute strength to unload a spool of wire.

Prior to the Colorado-Oklahoma team arriving, men in the village installed the power poles and anchors outside of homes after working together to carry the poles to each site and dig the holes. Then, when the Americans arrived, the men, young and old, took turns helping wherever they could.

They climbed trees, carried equipment and helped pull line, especially when it had to go up a mountainside. There was one long span across a deep, wide river valley, remembered project leader Damon Lester, an Oklahoma lineman. The American team expected it to take most of the day to get the line from one side to the other. It took 45 minutes, Lester noted with a wry smile.

Once the team was set on one side of the chasm and the wire was ready, villagers took off with the heavy line. They were down one side, across the small river and up the other side to the pole the team had ready on the other side, Lester explained. It took no time at all.

Villagers help the team pull wire through forested terrain.

That’s how the villagers were, said Trenton Jole, a lineman from Holy Cross Energy headquartered in Glenwood Springs. They would take turns helping the Americans in between working in their small corn fields on the sides of the mountains since it was planting time. They would hand plant a field and then show up the next day to help on the electrification project.

An Experience Worth Remembering

Grand Valley Power lineman Zeb Birch remembers an older man who was on the village council. He was there to help the team even though he didn’t have the equipment or, even any good shoes. “His shoes were completely blown open,” Birch said.

The inside of a typical village home.

Many of the younger men had backpacks to carry tools, rope and other supplies, but this older man didn’t have that either. He had an old sack that he used for carrying sand. It had been repaired and a handle rigged on it so he could carry whatever he needed — he was there to help bring electricity to his village.

Most of the homes in the village also didn’t have much. The linemen who wired the homes saw inside those homes. They saw how the kids did their homework by candlelight, how the people made do with what they had.

The homes were mostly built with adobe with tin roofs. Some had dirt floors. Some kitchens were a covered area on the side of the house. Other homes were simply a large room with sleeping hammocks at one end and the kitchen with its fire and workspace at the other end. But the people had pride in what they have. Their kids were clean, their clothes washed on stones at the river that runs through the community.

Celebrating the Gift of Light

Each of those homes received four lightbulbs, two light switches and two electrical outlets. Each homeowner chose where those were placed.

Lineworkers, government officials and villagers celebrate the lights coming on at the school in La Montanita de la Virgen, Guatemala.

It’s not much, but these people are resilient. They have built a life for themselves in a place with no running water and, up until now, no electricity.

They are grateful that electricity has now come to their community. “We thank God and the Americans for the gift of electricity,” said Roberto Ramirez Guerra, the mayor of San Pedro Pinula. He has been working with NRECA International, the philanthropic arm of the National Rural Electric Cooperative Association, since 2019 to bring electricity to this village. The pandemic stalled that progress until this year.

He led the celebration on Tuesday, September 13, when all of the villagers turned out to thank the lineworkers who brought light and electricity to their community. There was dancing, songs, poems and speeches as the villagers thanked the Americans for coming to Guatemala and working so hard for three weeks.

It was a bittersweet time for the lineworkers. They were ready to go home to their families, but they were leaving pieces of themselves behind in a community where they had established deep ties in a short amount of time.

“It was a privilege to use the line work trade to make a positive difference in the lives of the people of La Montanita. Their simplicity, joy and friendship were truly a gift,” said Clayton Shonk of White River Electric in Meeker.

“They can be so happy with so little,” added Nathaniel Pennell of Mountain View Electric, headquartered in Limon.

“We planted a seed that will be harvested for years and years. It’s not going to become a big plant by tomorrow, but it will continue to grow and bear fruit with time,” Lester said. “The elders see it as a convenience. The younger ones see it as opportunity for economic development.”

Access to electricity will enable growth in education, security, health care, economic prosperity and, overall, a better quality of life.

This Christmas, the lights will be on in the village of La Montanita de la Virgen, thanks to the Colorado and Oklahoma lineworkers who gave of themselves.

“We all believe in giving and doing what it takes,” said Birch, speaking for the entire American team, “yet, I didn’t give a tenth of what I got out of it.”

Editor Mona Neeley, traveling with the leadership team, was in La Montanita when the lights came on in the school.


Significance of Supply and Demand at Co-ops

By Kylee Coleman

Supply and demand. It’s not a new concept. It’s our collective way as a society of finding balance for goods and services, such as that piping hot cup of joe from your favorite java drive-thru on a subzero Colorado morning. They supply the steaming paper cup full of roasted, ground, filtered and brewed beans. And most mornings, let’s face it: we demand (and sometimes need) the caffeination.

Finding equilibrium is always a goal when it comes to supply and demand. The larger coffee chains presumably work to source just the right amount of beans to keep the coffee flowing. If they receive an abundance of beans for seasonal pumpkin spice lattes, the company’s supply gets out of whack; the beans may perish before they get used or there’s a risk of not having adequate storage space for the supply.

Through a network of landowners, growers, vendors, importers-exporters, roasters and more, coffee chains source coffee beans to fulfill their supply and meet their demand — the strategy for future needs and sales is likely on point. But if just one of these links in the supply chain breaks, it could throw off the whole operation and then the opposite happens: not enough beans. What then? You can forget that Friday date with your standing order of a grande, hot Americano with cream.

What’s assumed in this example, is that your coffee chain has the adequate resources — beans — to maintain its role in our caffeine cravings.

Supply, demand and the grid

This coffee supply-demand example is admittedly elementary. Is it that straightforward when it comes to our electricity supply and the grid of the future? Short answer: No. So what does “supply and demand” have to do with your electric cooperative?

Clearly, the electric grid and electricity distribution are much more complex and important than a fondness for a Friday cup of coffee. “At every moment, electric utilities and grid operators match the supply of power to the load demands of consumers, but there are many other dynamics to consider,” Tri-State G&T CEO Duane Highley said. “Utilities need to be flexible with generation resources so that they can reliably serve loads.”

Electricity is seemingly simple and predictable at this point, right? We flip a switch and hit a button on the remote — the lights turn on and the TV powers up. That’s the reliability we’ve come to expect and depend on.

We don’t give it much thought because, even with significant changes to the grid and technological advancements over the last 70 to 80 years, Colorado’s electric cooperatives have done a remarkable job at keeping our time in the dark at a minimum.

But there is so much more behind-the-scenes action that powers your life.

Demands of evolving energy alternatives

Colorado is in the midst of a clean energy transition. In 2019, the state legislature passed laws that set Colorado’s decarbonization goals. The state is moving away from coal-generated electricity and there is a major shift happening both in Colorado and across the country.

What may not be readily apparent to many consumers is, with these decarbonization efforts and the shift from fossil fuel energy sources, demand for electricity will grow — and continue to do so.

Consider, for example, charging your electric vehicle at home, using an air-source heat pump for home heating, or cooking on an electric induction cooktop. This surge of electricity use has led to increased consumer concern about the adequacy of electric resources to meet demand. Consumers are using more electricity, yet coal power plants are closing and being replaced with variable energy resources, such as wind and solar.

Even with these changes, outstanding reliability remains a core competency and primary goal of Colorado’s electric cooperatives and Tri-State G&T, the power supplier that serves the majority of the state’s electric cooperatives.

“The first job for Colorado’s electric co-ops is to keep power flowing to co-op consumer-members day and night, in good weather and bad,” CREA Executive Director Kent Singer wrote in a June 2022 column in Colorado Country Life magazine. “The energy transition that’s happening in Colorado adds yet another layer of complexity to the task of providing reliable, affordable electric service.”

The question your electric co-op is asking itself is: How will we maintain the reliability we are so good at providing if there’s a less-consistent supply from potentially variable generation resources such as wind and solar?

Resource adequacy explained

“Resource adequacy” is defined as the ability to provide reliable electric service at times of high demand or having enough capacity to meet customer needs under any scenario.

This means not only having sufficient supply to meet expected energy requirements, but also a reserve margin to account for potential situations that might impact the availability of resources. For example, more power might be needed when a long cold spell requires more heat for homes and businesses.

Situations like this not only affect our ability to light our kitchen, cook a meal and run the dishwasher at the end of the day, they also have the potential to impact the overall resiliency of the grid. That said, “resource adequacy” is closely tied to “grid resilience.”

“Grid resilience is not a new term for the utility industry as it’s what we strive for at Tri-State every day,” Highley stated. “But the way we approach grid resilience is changing.

“As we transition to cleaner energy,” Highley continued, “Tri-State recognizes the importance of establishing a regional transmission organization (RTO) in the West to access a larger pool of generation resources that enhances system resiliency. And we’ve been promoting timely participation in RTOs for years in order to meet the state’s and our members’ clean energy goals.”

The resource mix that utilities rely on to serve customer load includes increasing amounts of variable generation, such as wind, solar and emerging technologies. “Maintaining and enhancing the resilience of the grid requires continuous forecasting, planning, monitoring, testing and coordination,” Tri-State’s Vice President Planning and Analytics Lisa Tiffin said. “A changing resource mix, with increased renewable energy resources, adds new complexities that utilities are demonstrating can be well-managed to ensure reliability.”

With the increased use of wind and solar resources, emerging battery storage technology also has a role in resource adequacy. “When the output of renewable resources exceeds the immediate need for power, excess energy can be saved in batteries to provide power during periods of high demand or when there is decreased output from renewable resources,” Tiffin explained. “Battery storage has limitations due to efficiency, storage and charging hours and is not a single solution to resource adequacy and a resilient grid but is part of the overall solution in a transitioning grid.”

Reliability powering the clean energy transition

“Electric co-ops understand that electricity is the lifeblood of the West, and that electric system reliability is our first priority,” Highley said. “As a cooperative power supplier, Tri-State has risen to meet the challenges of resource adequacy and grid resiliency for decades, delivering reliable power to our members.

“As we move through our clean energy transition, our commitment to reliability is unwavering,” he continued. “Ensuring proper resource adequacy and grid resiliency helps ensure reliability, and we are working with our member co-ops, grid operators, stakeholders and regulators so that we can always keep the lights on.”

Just as our favorite coffee drive-thru needs the right amount of beans to keep its business booming and to keep us energized, Colorado’s electric distribution network needs the right amount and the right resources of power generation to produce the supply consumers have come to rely on and trust.

Through innovation, employing forward-thinking leaders, and setting and exceeding their own clean energy goals, Colorado’s electric co-ops are finding ways to keep resource adequacy, reliability and resiliency at the forefront of the conversation regarding Colorado’s clean energy transition. Not only that, your electric co-op is doing a remarkable job powering your way of life.

As Singer said, “Electric co-ops are confident that they can meet this challenge like they have met every other challenge for the past 80 years.”

Kylee Coleman researches and writes about topics affecting Colorado’s electric cooperatives and how your electric co-op innovatively approaches a rapidly changing industry.

For a deeper look into resource adequacy in Colorado and an analysis of potential legislation, visit crea.coop/crea-whitepapers.


Cooperation Among Cooperatives

Working together ensures phones are always answered
By Sarah Smith

Your local electric cooperative may be a relatively small utility, but its services are those you would expect from a much larger company. That is only possible because your co-op works with other small cooperatives to provide much more than it could by itself. We call it cooperation among cooperatives.

National Cooperative Month

October, which is National Cooperative Month, is a great time to look at how standing together and pooling resources can help local co-ops do their job better, more efficiently and more cost-effectively. It’s a time to celebrate cooperation among cooperatives (one of all co-ops’ seven guiding principles).

Handling after-hours outage calls and storm calls is one area where Colorado’s electric co-ops work together to make sure their consumer-members always have someone answering the phone. Many of the co-ops work with cooperative organizations such as Basin Electric Power Cooperative’s Security and Response Services (SRS) and the Cooperative Response Center (CRC) to meet this need.

SRS is offered by Basin Electric, a generation and transmission cooperative, and provides 24/7 dispatchers who add that local touch, answering calls with the specific cooperative’s name. Consumers are pleasantly surprised to hear a friendly voice when they call — even late at night or on weekends.

“It is extremely important for customers to experience the same satisfaction and care while using the after-hours line that they receive during the day,” said Jolene Johnson, SRS dispatch manager for Basin Electric. “We currently provide services for 86 co-ops in 12 different states. However, our main goal and primary focus is the safety of our lineman. Our customer service is a very high second, but SRS is here to ensure that the lineman is safe, from the time an outage is reported until the lineman is back home with their family.”

Co-ops Utilizing SRS Service

Currently, SRS provides service to seven of CREA’s electric cooperatives: San Isabel Electric in Pueblo West, Southeast Colorado Power in La Junta, SDCEA in Buena Vista, K.C. Electric in Hugo, Y-W Electric in Akron, White River Electric in Meeker, and Mountain Parks Electric in Granby.


Basin Electric SRS dispatcher Taylor Fideldy.

This year, SIEA experienced big storms, causing after-hours outages. SRS eased the impact on SIEA’s member services, linemen and dispatch teams during those critical times for the co-op and its consumer-members.

“SRS is really great to work with in every capacity,” said Candace Alfonso, a dispatcher at SIEA. “They are always willing to meet my needs and consistently value all feedback. Over the last six to12 months, we have experienced some major storms that caused outages overnight or landed on the weekend when I was not available, and SRS rarely needed my assistance. I appreciate all their hard work and dedication. They don’t have all the resources that I have, but they do the best they can with what they do have.

“All their dispatchers are very friendly and provide great customer service to SIEA’s members. They are supposed to represent us as much as possible, and I think they do an excellent job. Not only do they do exemplary work with outages, but they also answer all outage calls and take a ton of hazard calls. We are a great team and I love working with them,” Alfonso added.

Co-ops Utilizing CRC Service

CRC is another service-based organization that is an important tool for a handful of CREA’s electric cooperatives. Among the co-ops that use CRC services are Empire Electric in Cortez, Morgan County Rural Electric in Fort Morgan, Poudre Valley Rural Electric in Fort Collins, San Luis Valley Rural Electric in Monte Vista, and Yampa Valley Electric in Steamboat Springs.


Basin Electric’s Jolene Johnson, dispatch manager, and Seth Neer, lead service dispatcher.

CRC offers customer contact, a dispatch center and a central station alarm-monitoring service for electric utilities, which ensures their members’ need for reliable service is met, any time of day or night.

MCREA uses the after-hours call service center offered by CRC and appreciates that a co-op of its size has its phone lines answered 24/7. Occasionally, MCREA also leverages CRC’s services during normal business hours if a larger outage occurs. This frees the phone lines for employees who would otherwise be overwhelmed by the onslaught of call volume because of the outages.

“CRC is very quick to get in touch with our operations department when an issue on our system is reported by a community member. They text our on-call employees with after-hours outage information very quickly, allowing them to mobilize without delay. In addition, CRC conducts text message safety checks on MCREA’s employees when they are in the field performing after-hours restoration work,” said Rob Baranowski, MCREA’s manager of member services

“And CRC’s help doesn’t stop at outage calls. For example, we asked them to provide a dial-back number for this year’s annual meeting, which was held by phone. That way, any members who noticed a missed call from MCREA during our initial evening callout were given the live callback number by a CRC operator when they returned MCREA’s missed call,” Baranowski said.

Ken Tarr of EEA in Cortez agrees. “CRC is a blessing to our system operators during outage situations — especially large-scale ones — when they handle all the incoming calls. Our system operators are able to focus on getting power restored as well as the safety of our linemen in the field,” he said.

Cooperation Among Cooperatives in Action

Grand Valley Power in Grand Junction and Delta-Montrose Electric in Montrose also demonstrate cooperation among cooperatives on a smaller, but just as significant, scale. GVP and DMEA are close in proximity, with just about 60 miles between the two cooperatives; both serve the far western side of the state. GVP utilizes DMEA’s after-hours line, and occasionally, if all GVP’s employees are out at a training, they can also forward calls to DMEA’s call service.

Whether it’s at 10 p.m. during an unexpected power outage or on a Sunday afternoon when a blizzard hits, electric cooperatives rest easy knowing their members are still getting the immediate help they need when they call, whether it’s from SRS, CRC or even a neighboring co-op.

Cooperation among cooperatives is an integral component to running a successful organization, where its customers feel valued, heard and, most importantly, safe.

Sarah Smith, a former CREA employee, writes freelance articles on Colorado’s electric industry.


Utility Drones at Electric Co-ops

Co-ops ready for utility drones to expand their reach

By Reed Karaim and Mona Neeley

Imagine a drone flight at an electric cooperative in the not-too-distant future. Cool technologies, including utility drones at electric co-ops, are legitimately part of the conversation.

No longer limited to staying within the line of sight of its on-the-ground operator, it travels much, much farther down the power lines, using an array of visual, thermal and LIDAR sensors, which use lasers, to accomplish miles of inspection in a single flight.

Flying higher than today’s drones with an optical sensor on board, this future drone scans the sky for dangers, busily feeding data to an onboard artificial-intelligence-powered computer, which is linked to the flight computer. Sensing a private plane in its airspace, the drone automatically executes an avoidance maneuver, dropping rapidly in altitude and banking to avoid any chance of collision.

Miles away, at a control station, the co-op’s drone pilot sees the maneuver and could take control if necessary. But knowing the drone is designed to adjust its flight path more quickly than humanly possible, the pilot decides to allow the unmanned vehicle to fly itself to safety.

Danger averted, the drone resumes its mission down 50 miles of line or more, saving the cooperative untold hours of physical inspection by ground or helicopter.

“There is no question that that (beyond-line-of-sight rules) will have a huge impact on how we’re able to use and grow this technology,” said Bill Havonec, GIS lead for Sangre de Cristo Electric in Buena Vista, in an interview with the National Rural Electric Cooperative Association’s RE Magazine.

This future is already here for a small number of electric utilities that have received Federal Aviation Administration waivers allowing beyond-visual-line-of-sight (BVLOS) flights. But utility drones at electric co-ops is coming for more organizations as the FAA moves toward issuing regulations that could make BVLOS operations typical for those that meet the requirements.

An FAA advisory committee published recommendations establishing a roadmap to meet that goal, which could arrive within the next couple of years. The proposed changes also would give expanded right-of-way access and airspace rights to BVLOS drones that meet standards for avoidance and control capabilities.

“This is a huge deal,” said Stan McHann, senior research engineer and chief drone pilot for NRECA. “You’re going to see a massive improvement in what you can get done in a day.”
Josh Dellinger, general manager of Empire Electric Association in Cortez, agrees. The additional distance that drones will be able to fly will be especially valuable in hard-to-reach places. “We have quite a bit of that where lines go through areas adjacent to the road or forest service or BLM land,” he says.

“A trainload of data”
BVLOS is a key part of an evolution in drone capabilities that could transform inspection and maintenance for electric utilities in the coming years. McHann also foresees smaller drones strategically placed throughout a distribution system, able to respond to a SCADA event by taking to the air and quickly checking a trouble spot, sending images and other data back to operations, and giving the co-op a clearer idea of what is going on and what response is needed before sending a crew.

Expanded use of drones will help co-ops inspect power lines in hard to reach places.

As utility drones at electric co-ops become commonplace in co-op fleets, other innovative uses are likely to surface. Even with today’s limitations on flight range, drones are being used by co-ops for regular inspections, vegetation management, placing bird diverters on lines and pulling lead lines across rugged terrain to run new transmission lines.

“At SDCEA, we’re discovering a variety of uses for drone technology. It started with inspections and getting data into the GIS/ mapping and work order systems,” said Havonec.
“In addition to our routine maintenance inspections, we’re prioritizing flight plans with historical outage data and using that as a tool for system improvement,” he said. “Additionally, we’re inspecting new construction rights-of-way and vegetation management areas for inventory, monitoring and quality assurance.”

“Colorado’s co-ops each have between 1,000 and 10,000 miles of line to cover,” said Curt Graham, a job training and safety instructor with CREA who visits many of those co-ops regularly. “When you can get an uncrewed aircraft doing line inspection for you, looking at things on a schedule and reliable enough where you don’t need to have an operator actively supervising it all the time — that’s got real potential,” he said. “And it’s coming.”

Advanced sensors will provide a new level of granular detail on the condition of system hardware. Infrared sensors, for example, can look for hot or arcing connections, transformers and other components, spotting current or future problems hidden from the human eye.

Taking full advantage of these capabilities will require the ability to effectively manage the data they can provide.

“Software is key here,” McHann noted. “One flight will create a trainload of data, and it’s essential that you be able to process it and see that it’s integrated into your system in ways that get the information where you need it.”

NRECA is already working with local electric co-ops on flight management and data analysis software integration.

Training and certification
BVLOS will require a new level of training and certification for drone operators. Today, a Level 107 certification from the FAA, which entails passing a written test, is all that is necessary for basic, within-visual-line-of-sight drone operations at a co-op or other electric utility.

The FAA advisory committee’s recommendations include a new pilot certification for BVLOS flight, although physical piloting skills combined with aviation safety best practices will remain important.

The human factor
Operating today with a drone and operator out in the field, McHann said, a co-op can cover to 80 to 120 assets a day, maybe only 70 to 80 in rougher terrain. Taking advantage of the longer range, flying time and speed at which BVLOS drones can operate, a greater-than-tenfold increase becomes possible, with a drone able to cover nearly 1,400 assets in a day.

“Your SAIDI-CAIDI (outage measurement) numbers are going to come down. That’s real money,” McHann noted.

“And as the price of the cameras and sensors and other equipment come down as well, it will effectively bring everyone into this space,” said Havonec.

While the newest hardware often gets the most attention, the unmanned vehicle technology is just a piece of the program. The parts that really tie everything together will be the training and regulatory requirements necessary to fly the drone.

Meeting those standards to take full advantage of BVLOS and other advancements down the road will be essential to economically meeting the demands of maintaining the grid, according to co-op managers.

The rewards will be increased efficiency, system reliability and personnel safety through reducing hazardous tasks such as pole climbing, and these can outweigh the costs.

Reed Karaim writes on rural cooperative news for the National Rural Electric Cooperative Association. Mona Neeley is editor of Colorado Country Life magazine.

Charging Ahead in Colorado

Coaches, new funding, bring EVs, charging stations to rural areas

By Laurie E. Dickson

You may have heard the buzz about electric vehicles and charging stations in Colorado. Maybe you have seen charging stations at your corner store, the local electric co-op or your workplace. Charging stations and EVs are becoming more common, popping up all around the state.

There is an ongoing effort across Colorado to reduce emissions and provide options for clean transportation. In 2019, Colorado became the first state in the central U.S. to adopt Zero Emission Vehicle standards for cars and trucks, ensuring a reduction in harmful emissions and providing economic benefits for its citizens. Gov. Jared Polis issued an executive order supporting a transition to zero emissions and accelerating the electrification of cars, buses, trucks and other vehicles with a goal of achieving 940,000 EVs on the road by 2030.

What’s being done to increase the adoption of EVs and meet the goals in Colorado? One way is through the ReCharge Colorado program, started in 2014 through the Colorado Energy Office.

The original goal was to encourage alternative and clean transportation. ReCharge Colorado has evolved to be the program that advances the adoption of EVs and installation of charging infrastructure across the state.

“The state of Colorado has set ambitious goals for EVs,” says Matt Mines, senior program manager in transportation fuels and technology at the Colorado Energy Office.

“ReCharge Colorado coaches provide a critical link to local communities to connect our EV programs with local needs,” he notes. “Direct education and outreach, such as that provided by the ReCharge coaches, are a crucial aspect to ensuring the benefits of transportation electrification are understood and materialize throughout the state.”

There are five ReCharge regions in the state, each with a ReCharge coach who provides free, impartial advice; EV education; offers community workshops and grant writing assistance; promotes EV adoption through group buys; and supports auto dealerships with education and opportunities. Every county in the state is represented by a ReCharge coach.

Coaches know their territories and can provide the best solutions for the communities where they serve. By working with Colorado communities, ReCharge coaches help create an ecosystem of broad support along with the education necessary for a successful transition to EVs.

“Working as a ReCharge coach allows me to better get to know the communities where I live and play — and to talk to local business owners, employers, and property managers about how they can provide a public benefit in the form of EV charging stations,” says Sonja Meintsma, the ReCharge coach for Denver Metro Clean Cities and the Colorado Springs region.

“As Colorado’s EV ownership grows and we work toward reaching the statewide goal of getting 940,000 EVs on the road by 2030, access to public chargers across the state, including in rural, underserved and high emission areas, will be essential. As a coach, I feel I am making a tangible impact on our state’s ability to improve local air quality, reduce climate-altering emissions, and meet the needs of EV drivers in the state,” she adds.

ReCharge coaches provide consultation for interested businesses and communities regarding the design and technical requirements needed to install charging stations. For example, is the location best suited for Level 2 charging stations or a faster DC Fast Charger? Is there electrical service available at the location and is it sufficient to power an EV charging station? It’s the job of the coaches to know the incentives, federal and state tax credits, as well as the utility member co-op rebates available in their territories that can offset costs.

Kathy Woods, director of economic development for the city of Alamosa, comments, “I’ve had several opportunities to work with our ReCharge coach. From answering questions, to assessing feasibility, to celebrating with us upon completion of projects, the coach is right by your side and very helpful. ReCharge coaches are great partners.”

There is a concerted effort across the state’s ReCharge regions to increase the charging infrastructure along all major highways and byways. Electrifying Colorado’s Scenic Byways is a goal the ReCharge coaches work to attain. There are 26 Scenic and Historic Byways in the state. Electrified Byway designation guarantees that when you drive on our mountain highways, you can make the journey without worrying about the next charging station location.

By now, we’ve all heard about the Infrastructure Investment and Jobs Act signed in November 2021. The bill includes funding at the federal and state levels for EVs and the charging infrastructure needed to support EV deployment. State and local governments will benefit from $7.7 billion dedicated to the deployment of EVs and related infrastructure.

The bill also dedicated $12.7 billion to the deployment of all types of clean vehicles and fueling infrastructure, including EVs and charging infrastructure and $10.3 billion for grid and battery-related investments.

With gas prices soaring and funding support for investing in EV technology, it’s a great time to invest in the charging infrastructure that makes driving EVs everywhere in Colorado feasible. A ReCharge coach can recommend options for any local community or business and connect you to funding opportunities as you make the transition to zero emission vehicles and the new energy economy.

Laurie Dickson is the executive director of the nonprofit, 4CORE (Four Corners Office for Resource Efficiency) and the ReCharge coach for southern Colorado. Visit energyoffice.colorado.gov/zeroemission-vehicles/recharge-colorado to learn more about ReCharge Colorado.